Sains Malaysiana 52(7)(2023): 2021-2035

http://doi.org/10.17576/jsm-2023-5207-11

 

Adsorption of Ciprofloxacin using Composite Film from PVA, Agarose and Maltodextrin

(Penjerapan Ciprofloksacin menggunakan Filem Komposit daripada PVA, Agarosa dan Maltodekstrin)

 

BICH NGOC HOANG1,2, HUONG DIEU TRAN3,4, THI CAM QUYEN NGO1,2, NGUYEN THI NHU DUNG5 & LONG GIANG BACH1,2,*

 

1Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

2Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam

3Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam

4Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

5Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Vietnam

 

Received: 16 December 2022/Accepted: 19 June 2023

 

Abstract

Antibiotic resistance is one of the most alarming problems today. Therefore, composite membranes have been widely applied for the removal of antibiotics from water. PVA/Agarose/Maltodextrin films have been synthesized by casting with various component ratios. They were evaluated for characteristics through moisture, solubility, expansion, and BET results. The results showed that PVA/Agarose/Maltodextrin films exhibited the best viability in the aquatic environment through low solubility (68.88% ± 0.03), high swelling (431.77% ± 5.89) and pore volume (0.034969 cm³/g). The adsorption capacity of PVA/Agarose/Maltodextrin was tested for several antibiotics such as Ciprofloxacin, Tetracycline, Oxy-Tetracycline, and Chloramphenicol. The results showed that Ciprofloxacin was removed by the PVA/Agarose/Maltodextrin films better than other antibiotics. The highest antibiotic adsorption was obtained at 20 min, temperature of 30 °C, dosage of 2 g/L, pH 6, and antibiotic concentration of 40 mg/L. Ciprofloxacin adsorption was predicted through adsorption kinetic and isothermal models. The compatibility of the Pseudo First Order kinetic and Dubinin-Radushkevich isothermal has shown that adsorption takes place according to a physical adsorption mechanism with electrostatic interactions on the surface of the material. The maximum adsorption capacity recorded at 4.48 mg/g based on the Dubinin-Radushkevich isothermal.

 

Keywords: Agarose; Ciprofloxacin; composite membrane; Maltodextrin; PVA

 


Abstrak

Rintangan antibiotik ialah salah satu masalah yang paling membimbangkan hari ini. Oleh itu, membran komposit telah digunakan secara meluas untuk penyingkiran antibiotik daripada air. Filem PVA/Agarosa/Maltodekstrin telah disintesis dengan tuangan dengan pelbagai nisbah komponen. Ia dinilai untuk ciri melalui kelembapan, keterlarutan, pengembangan dan keputusan BET. Keputusan menunjukkan bahawa filem PVA/Agarosa/Maltodekstrin mempamerkan daya maju terbaik dalam persekitaran akuatik melalui keterlarutan rendah (68.88% ± 0.03), bengkak tinggi (431.77% ± 5.89) dan isi padu liang (0.034969 cm³/g). Kapasiti penjerapan PVA/Agarosa/Maltodekstrin telah diuji untuk beberapa antibiotik seperti Ciprofloksacin, Tetracycline, Oxy-Tetracycline dan Chloramphenicol. Keputusan menunjukkan bahawa Ciprofloksacin telah dikeluarkan oleh filem PVA/Agarose/Maltodekstrin lebih baik daripada antibiotik lain. Penjerapan antibiotik tertinggi diperoleh pada 20 minit, suhu 30 °C, dos 2 g/L, pH 6 dan kepekatan antibiotik 40 mg/L. Penjerapan Ciprofloksacin telah diramalkan melalui model kinetik dan isoterma penjerapan. Keserasian kinetik Pseudo First Order dan isoterma Dubinin-Radushkevich telah menunjukkan bahawa penjerapan berlaku mengikut mekanisme penjerapan fizikal dengan interaksi elektrostatik pada permukaan bahan. Kapasiti penjerapan maksimum direkodkan pada 4.48 mg/g berdasarkan isoterma Dubinin-Radushkevich.

 

Kata kunci: Agarose; Ciprofloksacin; membran komposit; Maltodekstrin; PVA

 

REFERENCES

Abd El-Monaem, E.M., Eltaweil, A.S., M. Elshishini, H., Mohamed Hosny, Abou Alsoaud, M.M., Attia, N.F., El-Subruiti, G.M. & Omer, A.M. 2022a. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. Arabian Journal of Chemistry 15(5): 103743. https://doi.org/10.1016/j.arabjc.2022.103743

Abd El-Monaem, E.M., Omer, A.M., Khalifa, R.E. & Eltaweil, A.S. 2022b. Floatable cellulose acetate beads embedded with flower-like Zwitterionic binary MOF/PDA for efficient removal of tetracycline. Journal of Colloid and Interface Science 620(August): 333-345. https://doi.org/10.1016/j.jcis.2022.04.010

Abdeen, Z., Mohammad, S.G. & Mahmoud, M.S. 2015. Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environmental Nanotechnology, Monitoring & Management 3: 1-9. https://doi.org/10.1016/j.enmm.2014.10.001

Aslam, M., Kalyar, M.A. & Raza, Z.A. 2018. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science 58(12): 2119-2132. https://doi.org/10.1002/pen.24855

Asrofi, M., Dwilaksana, D., Abral, H. & Fajrul, R. 2019. Tensile, thermal and moisture absorption properties of polyvinyl alcohol (PVA)/Bengkuang (Pachyrhizuserosus) starch blend films. Material Science Research India 16(1): 70-75. https://doi.org/10.13005/msri/160110

Bailey, E.J. & Winey, K.I. 2020. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Progress in Polymer Science 105(June): 101242. https://doi.org/10.1016/j.progpolymsci.2020.101242

Boczkaj, G. & Fernandes, A. 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions : A review. Chemical Engineering Journal https://doi.org/10.1016/j.cej.2017.03.084

Chang, Q., Ali, A., Su, J., Wen, Q., Bai, Y., Gao, Z. & Xiong, R. 2021. Efficient removal of nitrate, manganese, and tetracycline by a polyvinyl alcohol/sodium alginate with sponge cube immobilized bioreactor. Bioresource Technology 331(July): 125065. https://doi.org/10.1016/j.biortech.2021.125065

Chen, C., Tang, Z., Ma, Y., Qiu, W., Yang, F., Mei, J. & Jing, X. 2018. Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly(vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Progress in Organic Coatings 123(October): 176-184. https://doi.org/10.1016/j.porgcoat.2018.07.001

Dhand, V., Mittal, G., Rhee, K.Y., Park, S-J. & Hui, D. 2015. A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering 73(May): 166-180. https://doi.org/10.1016/j.compositesb.2014.12.011

Dieu, T.L. & Hoang, T.V. 2021. Synthesis of graphene oxide/ polyvinyl alcohol (GO/PVA) composite film as an adsorbent. Vietnam Journal of Catalysis and Adsorption 10(3): 6-10. https://doi.org/10.51316/jca.2021.042

Ding, C. & He, J. 2010. Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology 87(3): 925-941. https://doi.org/10.1007/s00253-010-2649-5

Falath, W., Sabir, A. & Jacob, K.I. 2017. Novel reverse osmosis membranes composed of modified PVA/gum arabic conjugates: Biofouling mitigation and chlorine resistance enhancement. Carbohydrate Polymers 155(January): 28-39. https://doi.org/10.1016/j.carbpol.2016.08.058

Figueiredo, K.C.S., Alves, T.L.M. & Borges, C.P. 2009. Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. Journal of Applied Polymer Science 111(6): 3074-3080. https://doi.org/10.1002/app.29263

Fu, S., Sun, Z., Huang, P., Li, Y. & Hu, N. 2019. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science 1(1): 2-30. https://doi.org/10.1016/j.nanoms.2019.02.006

Gao, S., Zhu, Y., Gong, Y., Wang, Z., Fang, W. & Jin, J. 2019. Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving. ACS Nano 13(5): 5278-5290. https://doi.org/10.1021/acsnano.8b09761

Ge, J.C., Wu, G., Yoon, S.K., Kim, M.S. & Choi, N.J. 2021. Study on the preparation and lipophilic properties of polyvinyl alcohol (PVA) nanofiber membranes via green electrospinning. Nanomaterials 11(10): 2514. https://doi.org/10.3390/nano11102514

Ghaffari, H.R., Pasalari, H., Tajvar, A., Dindarloo, K., BakGoudarzi, B., Alipour, V. & Ghanbarneajd, A. 2017. Linear and nonlinear two-parameter adsorption isotherm modeling: A case-study. The International Journal of Engineering and Science https://doi.org/10.9790/1813-0609010111

Ghazalian, M., Afshar, S., Rostami, A., Rashedi, S. & Bahrami, S.H. 2022. Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects 636(March): 128163. https://doi.org/10.1016/j.colsurfa.2021.128163

Ghemati, Dj. & Aliouche, Dj. 2014. Dye adsorption behavior of polyvinyl alcohol/glutaraldehyde/β-cyclodextrin polymer membranes. Journal of Applied Spectroscopy 81(2): 257-263. https://doi.org/10.1007/s10812-014-9919-4

Hami, H., Abbas, R., Jasim, A., Abdul Abass, D., A. Abed, M. & A. Maryoosh, A. 2019. Kinetics study of removal doxycycline drug from aqueous solution using aluminum oxide surface. Egyptian Journal of Chemistry 62(Special Issue Part 1) Innovation in Chemistry: 91-101. https://doi.org/10.21608/ejchem.2019.5499.1483

Hamoudi, S.A., Hamdi, B. & Brendlé, J. 2021. Tetracycline removal from water by adsorption on geomaterial, activated carbon and clay adsorbents. Ecological Chemistry and Engineering S 28(3): 303-328. https://doi.org/10.2478/eces-2021-0021

Hoang, B.N., Nguyen, T.T., Nguyen, D.V. & Tan, L.V. 2021. Removal of crystal violet from aqueous solution using environment-friendly and water-resistance membrane based on Polyvinyl/Agar/Maltodextrin. Materials Today: Proceedings 38: 3046-3052. https://doi.org/10.1016/j.matpr.2020.09.391.

Hoang, B.N., Nguyen, T.T., Bui, Q.P.T., Bach, L.G., Vo, D‐V.N., Trinh, C.D., Bui, X‐T. & Nguyen, T.D. 2020. Enhanced selective adsorption of cation organic dyes on polyvinyl alcohol/agar/maltodextrin water‐resistance biomembrane. Journal of Applied Polymer Science 137(30): 48904. https://doi.org/10.1002/app.48904

Janani, B., Okla, M.K., Abdel-Maksoud, M.A., AbdElgawad, H., Thomas, A.M., Raju, L.L., Al-Qahtani, W.H. & Sudheer Khan, S. 2022. CuO loaded ZnS nanoflower entrapped on PVA-Chitosan matrix for boosted visible light photocatalysis for tetracycline degradation and anti-bacterial application. Journal of Environmental Management 306(March): 114396. https://doi.org/10.1016/j.jenvman.2021.114396

Jipa, I.M., Stoica-Guzun, A. & Stroescu, M. 2012. Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT 47(2): 400-406. https://doi.org/10.1016/j.lwt.2012.01.039

Khandaker, S., Toyohara, Y., Kamida, S. & Kuba, T. 2018. Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resources and Industry 19(June): 35-46. https://doi.org/10.1016/j.wri.2018.01.001

Kosmulski, M. 2020. The pH dependent surface charging and points of zero charge. VIII. update. Advances in Colloid and Interface Science 275(January): 102064. https://doi.org/10.1016/j.cis.2019.102064

Kumar, K., Gupta, S.C., Chander, Y. & Singh, A.K. 2005. Antibiotic use in agriculture and its impact on the terrestrial environment. Advanced in Egronomy 87: 1-54. https://doi.org/10.1016/S0065-2113(05)87001-4

Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z. & Wang, R. 2022. Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads. Journal of Hazardous Materials 422(January): 126863. https://doi.org/10.1016/j.jhazmat.2021.126863

Lu, T., Xu, X., Liu, X. & Sun, T. 2017. Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline. Chemical Engineering Journal 308(January): 151-159. https://doi.org/10.1016/j.cej.2016.09.009

Lulijwa, R., Rupia, E.J. & Alfaro, A.C. 2020. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture 12(2): 640-663. https://doi.org/10.1111/raq.12344.

Madera-Santana, T.J., Freile-Pelegrín, Y. & Azamar-Barrios, J.A. 2014. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)–agar biodegradable films. International Journal of Biological Macromolecules 69(August): 176-184. https://doi.org/10.1016/j.ijbiomac.2014.05.044

Mahdavinia, G.R., Massoudi, A., Baghban, A. & Shokri, E. 2014. Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. Journal of Environmental Chemical Engineering 2(3): 1578-1587. https://doi.org/10.1016/j.jece.2014.05.020

Maqsoudlou, A., Mahoonak, A.S., Mohebodini, H. & Koushki, V. 2020. Stability and structural properties of bee pollen protein hydrolysate microencapsulated using maltodextrin and whey protein concentrate. Heliyon 6(5): e03731. https://doi.org/10.1016/j.heliyon.2020.e03731

Mirasgedis, S., Hontou, V., Georgopoulou, E., Sarafidis, Y., Gakis, N., Lalas, D.P., Loukatos, A., GargoulasN., Mentzis, A.Economidis, D.Triantafilopoulos, T.Korizi, K. & Mavrotas, G. 2008. Environmental damage costs from airborne pollution of industrial activities in the Greater Athens, Greece area and the resulting benefits from the introduction of BAT. Environmental Impact Assessment Review 28(1): 39-56. https://doi.org/10.1016/j.eiar.2007.03.006

Mishra, S., Tiwary, D., Ohri, A. & Agnihotri, A.K. 2019. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India. Groundwater for Sustainable Development 9(October): 100230. https://doi.org/10.1016/j.gsd.2019.100230

Nawar, A.M. & El-Mahalawy, A.M. 2020. Heterostructure device based on brilliant green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications. Journal of Materials Science: Materials in Electronics 31(4): 3256-3273. https://doi.org/10.1007/s10854-020-02874-1

Nguyen, T.T., Hoang, B.N., Tran, T.V., Nguyen, D.V., Nguyen, T.D. & Vo, D-V.N. 2021. Agar/maltodextrin/poly(vinyl alcohol) walled montmorillonite composites for removal of methylene blue from aqueous solutions. Surfaces and Interfaces 26(October): 101410. https://doi.org/10.1016/j.surfin.2021.101410

Ololade, O.O., Mavimbela, S., Oke, S.A. & Makhadi, R. 2019. Impact of leachate from northern landfill site in bloemfontein on water and soil quality: Implications for water and food security. Sustainability 11(15): 4238. https://doi.org/10.3390/su11154238

Przydatek, G. & Kanownik, W. 2019. Impact of small municipal solid waste landfill on groundwater quality. Environmental Monitoring and Assessment 191(3): 169. https://doi.org/10.1007/s10661-019-7279-5

Ramakrishna, S., Mayer, J., Wintermantel, E. & Leong, K.W. 2001. Biomedical applications of polymer-composite materials: A review. Composites Science and Technology 61(9): 1189-1224. https://doi.org/10.1016/S0266-3538(00)00241-4

Rodríguez-San-Miguel, D. & Zamora, F. 2019. Processing of covalent organic frameworks: An ingredient for a material to succeed. Chemical Society Reviews 48(16): 4375-4386. https://doi.org/10.1039/C9CS00258H

Rynkowska, E., Fatyeyeva, K., Marais, S., Kujawa, J. & Kujawski, W. 2019. Chemically and thermally crosslinked PVA-based membranes: Effect on swelling and transport behavior. Polymers 11(11): 1799. https://doi.org/10.3390/polym11111799

Sabarish, R. & Unnikrishnan, G. 2018. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydrate Polymers 199(November): 129-140. https://doi.org/10.1016/j.carbpol.2018.06.123

Saha, N., Volpe, M., Fiori, L., Volpe, R., Messineo, A. & Toufiq Reza, M. 2020. Cationic dye adsorption on hydrochars of winery and citrus juice industries residues: Performance, mechanism, and thermodynamics. Energies 13(18): 4686. https://doi.org/10.3390/en13184686

Shamsuri, A.A. & Daik, R. 2013. Utilization of an ionic liquid/urea mixture as a physical coupling agent for agarose/talc composite films. Materials 6(2): 682-698. https://doi.org/10.3390/ma6020682

Sritham, E. & Gunasekaran, S. 2017. FTIR spectroscopic evaluation of sucrose-maltodextrin-sodium citrate bioglass. Food Hydrocolloids 70(September): 371-382. https://doi.org/10.1016/j.foodhyd.2017.04.023

Thuan, V.T., Bich, N.H., Hien, T.T., Nhan, P.T.N., Van, T.T.H., Hai, N.D., Cao, V.D., Nguyen, T.D. & Bach, L.G. 2019. Activated carbon via. pyropysis of tea industry waste biochar with KOH activation: Preparation and characterization. Journal of Engineering and Applied Sciences 14(6): 1755-1759. https://doi.org/10.36478/jeasci.2019.1755.1759

Tian, H., Yan, J., Rajulu, A.V., Xiang, A. & Luo, X. 2017. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules 96: 518-523. https://doi.org/10.1016/j.ijbiomac.2016.12.067

Tran, H.N., You, S-J., Hosseini-Bandegharaei, A. & Chao, H-P. 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research 120(September): 88-116. https://doi.org/10.1016/j.watres.2017.04.014

Uppuluri, V.N.V.A. & Shanmugarajan, T.S. 2019. Icariin-loaded polyvinyl alcohol/agar hydrogel: Development, characterization, and in vivo evaluation in a full-thickness burn model. The International Journal of Lower Extremity Wounds 18(3): 323-335. https://doi.org/10.1177/1534734619849982

Wang, W., Dai, Y., Zhang, H., Zhang, R., Hou, H. & Dong, H. 2018. Effects of hydrophobic agents on the physicochemical properties of edible agar/maltodextrin films. Food Hydrocolloids https://doi.org/10.1016/j.foodhyd.2018.10.008

Wu, M., Zhao, S., Jing, R., Shao, Y., Liu, X., Lv, F., Hu, X., Zhang, Q., Meng, Z. & Liu, A. 2019. Competitive adsorption of antibiotic tetracycline and ciprofloxacin on montmorillonite. Applied Clay Science 180(November): 105175. https://doi.org/10.1016/j.clay.2019.105175

Yan, C., Fan, L., Chen, Y. & Xiong, Y. 2020. Effective adsorption of oxytetracycline from aqueous solution by lanthanum modified magnetic humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 602(October): 125135. https://doi.org/10.1016/j.colsurfa.2020.125135

Yang, W., Fortunati, E., Bertoglio, F., Owczarek, J.S., Bruni, G., Kozanecki, M., Kenny, J.M., Torre, L., Visai, L. & Puglia, D. 2018. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2017.10.084

Yang, X., Zhu, Z., Liu, Q., Chen, X. & Ma, M. 2008. Effects of PVA, agar contents, and irradiation doses on properties of PVA/Ws-chitosan/glycerol hydrogels made by γ-irradiation followed by freeze-thawing. Radiation Physics and Chemistry 77(8): 954-960. https://doi.org/10.1016/j.radphyschem.2008.02.011

Yazidi, A., Atrous, M., Soetaredjo, F.E., Sellaoui, L., Ismadji, S., Erto, A., Bonilla-Petriciolet, A., Dotto, G.L. & Ben Lamine, A. 2020. Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis. Chemical Engineering Journal 379(January): 122320. https://doi.org/10.1016/j.cej.2019.122320

Zhao, Y., Li, X., Shen, J., Gao, C. & Van der Bruggen, B. 2020. The potential of kevlar aramid nanofiber composite membranes. Journal of Materials Chemistry A 8(16): 7548-7568. https://doi.org/10.1039/D0TA01654C

 

*Corresponding author; email: blgiang@ntt.edu.vn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous